MENU
TIPS
ティップス
ホーム / ティップス

【開発事例】サーマルセンサーとDeep Learningを利用した一般物体認識

技術情報の1例として、弊社で行った開発事例を紹介します。

―GPUを活用したDeep Learningによる熱情報からの物体認識―
サーマルセンサーから取得できる熱情報により物体をリアルタイムに検出することができます。
TIPS1

この開発を進める中で、多くの苦労した点や工夫した点があります。
先ず工夫した点は、人を映した時に人と判断できるように人以外を含めた20種類のカテゴリー学習だけでなく、人の一部のみ移った画像も学習させることで人の特徴抽出に特化できるようにしたことです。
学習データの撮影は社員に手伝っていただき作成しましたが、人の画像だけでも1,000枚を超えるデータを作成しました。

次に苦労した点は、物体認識の学習済みモデルをサーマル画像用に転移学習させる際、GPUメモリが足りなかったことです。急遽クラウドのGPUインスタンスを活用して先に進めることができました。
また、用意していたサーマルセンサーがWindows専用であり、Linux(Ubuntu)に対応していなかったため、ドライバを作りこむ必要がありました。
しかしここでまた問題が発生しました。当初V4LからはRGB値でセンサーの値が取得できると考えていたのですが、RGBモードに対応していませんでした。そのため、センサーのレンジ情報を加工しました。

テストでは冷凍食品をセンサーの前に持ってきてみたり、ライターで火を撮ったり、熱湯の入れたカップを撮ったりするというような地道な作業もありましたが、無事に開発することができて達成感を感じることができました。

~ 参考動画 ~

参考として、実際に撮影した動画を公開します。
赤色で囲まれた枠の左上に人なら”Person”、車なら”car”と表示されます。